234 research outputs found

    Generalized Area Spectral Efficiency: An Effective Performance Metric for Green Wireless Communications

    Full text link
    Area spectral efficiency (ASE) was introduced as a metric to quantify the spectral utilization efficiency of cellular systems. Unlike other performance metrics, ASE takes into account the spatial property of cellular systems. In this paper, we generalize the concept of ASE to study arbitrary wireless transmissions. Specifically, we introduce the notion of affected area to characterize the spatial property of arbitrary wireless transmissions. Based on the definition of affected area, we define the performance metric, generalized area spectral efficiency (GASE), to quantify the spatial spectral utilization efficiency as well as the greenness of wireless transmissions. After illustrating its evaluation for point-to-point transmission, we analyze the GASE performance of several different transmission scenarios, including dual-hop relay transmission, three-node cooperative relay transmission and underlay cognitive radio transmission. We derive closed-form expressions for the GASE metric of each transmission scenario under Rayleigh fading environment whenever possible. Through mathematical analysis and numerical examples, we show that the GASE metric provides a new perspective on the design and optimization of wireless transmissions, especially on the transmitting power selection. We also show that introducing relay nodes can greatly improve the spatial utilization efficiency of wireless systems. We illustrate that the GASE metric can help optimize the deployment of underlay cognitive radio systems.Comment: 11 pages, 8 figures, accepted by TCo

    UAV Trajectory Optimization for Directional THz Links Using Deep Reinforcement Learning

    Full text link
    As an alternative solution for quick disaster recovery of backhaul/fronthaul links, in this paper, a dynamic unmanned aerial vehicles (UAV)-assisted heterogeneous (HetNet) network equipped with directional terahertz (THz) antennas is studied to solve the problem of transferring traffic of distributed small cells. To this end, we first characterize a detailed three-dimensional modeling of the dynamic UAV-assisted HetNet, and then, we formulate the problem for UAV trajectory to minimize the maximum outage probability of directional THz links. Then, using deep reinforcement learning (DRL) method, we propose an efficient algorithm to learn the optimal trajectory. Finally, using simulations, we investigate the performance of the proposed DRL-based trajectory method

    On Modeling Heterogeneous Wireless Networks Using Non-Poisson Point Processes

    Full text link
    Future wireless networks are required to support 1000 times higher data rate, than the current LTE standard. In order to meet the ever increasing demand, it is inevitable that, future wireless networks will have to develop seamless interconnection between multiple technologies. A manifestation of this idea is the collaboration among different types of network tiers such as macro and small cells, leading to the so-called heterogeneous networks (HetNets). Researchers have used stochastic geometry to analyze such networks and understand their real potential. Unsurprisingly, it has been revealed that interference has a detrimental effect on performance, especially if not modeled properly. Interference can be correlated in space and/or time, which has been overlooked in the past. For instance, it is normally assumed that the nodes are located completely independent of each other and follow a homogeneous Poisson point process (PPP), which is not necessarily true in real networks since the node locations are spatially dependent. In addition, the interference correlation created by correlated stochastic processes has mostly been ignored. To this end, we take a different approach in modeling the interference where we use non-PPP, as well as we study the impact of spatial and temporal correlation on the performance of HetNets. To illustrate the impact of correlation on performance, we consider three case studies from real-life scenarios. Specifically, we use massive multiple-input multiple-output (MIMO) to understand the impact of spatial correlation; we use the random medium access protocol to examine the temporal correlation; and we use cooperative relay networks to illustrate the spatial-temporal correlation. We present several numerical examples through which we demonstrate the impact of various correlation types on the performance of HetNets.Comment: Submitted to IEEE Communications Magazin

    A Distributed Approach for Networked Flying Platform Association with Small Cells in 5G+ Networks

    Get PDF
    The densification of small-cell base stations in a 5G architecture is a promising approach to enhance the coverage area and facilitate the ever increasing capacity demand of end users. However, the bottleneck is an intelligent management of a backhaul/fronthaul network for these small-cell base stations. This involves efficient association and placement of the backhaul hubs that connects these small-cells with the core network. Terrestrial hubs suffer from an inefficient non line of sight link limitations and unavailability of a proper infrastructure in an urban area. Seeing the popularity of flying platforms, we employ here an idea of using networked flying platform (NFP) such as unmanned aerial vehicles (UAVs), drones, unmanned balloons flying at different altitudes, as aerial backhaul hubs. The association problem of these NFP-hubs and small-cell base stations is formulated considering backhaul link and NFP related limitations such as maximum number of supported links and bandwidth. Then, this paper presents an efficient and distributed solution of the designed problem, which performs a greedy search in order to maximize the sum rate of the overall network. A favorable performance is observed via a numerical comparison of our proposed method with optimal exhaustive search algorithm in terms of sum rate and run-time speed.Comment: Submitted to IEEE GLOBECOM 2017, 7 pages and 4 figure

    A Stochastic Geometric Analysis of Device-to-Device Communications Operating over Generalized Fading Channels

    Get PDF
    Device-to-device (D2D) communications are now considered as an integral part of future 5G networks which will enable direct communication between user equipment (UE) without unnecessary routing via the network infrastructure. This architecture will result in higher throughputs than conventional cellular networks, but with the increased potential for co-channel interference induced by randomly located cellular and D2D UEs. The physical channels which constitute D2D communications can be expected to be complex in nature, experiencing both line-of-sight (LOS) and non-LOS (NLOS) conditions across closely located D2D pairs. As well as this, given the diverse range of operating environments, they may also be subject to clustering of the scattered multipath contribution, i.e., propagation characteristics which are quite dissimilar to conventional Rayeligh fading environments. To address these challenges, we consider two recently proposed generalized fading models, namely κ−μ\kappa-\mu and η−μ\eta-\mu, to characterize the fading behavior in D2D communications. Together, these models encompass many of the most widely encountered and utilized fading models in the literature such as Rayleigh, Rice (Nakagami-nn), Nakagami-mm, Hoyt (Nakagami-qq) and One-Sided Gaussian. Using stochastic geometry we evaluate the rate and bit error probability of D2D networks under generalized fading conditions. Based on the analytical results, we present new insights into the trade-offs between the reliability, rate, and mode selection under realistic operating conditions. Our results suggest that D2D mode achieves higher rates over cellular link at the expense of a higher bit error probability. Through numerical evaluations, we also investigate the performance gains of D2D networks and demonstrate their superiority over traditional cellular networks.Comment: Submitted to IEEE Transactions on Wireless Communication
    • …
    corecore